Performs univariate regression for each exposure on a binary, continuous, or count outcome. Depending on `approach`, returns either Odds Ratios (OR), Risk Ratios (RR), or Incidence Rate Ratios (IRR).
Arguments
- data
A data frame containing the variables.
- outcome
outcome variable (binary, continuous, or count).
- exposures
A vector of predictor variables.
- approach
Modeling approach to use. One of: `"logit"` (OR), `"log-binomial"` (RR), `"poisson"` (IRR), `"robpoisson"` (RR), `"linear"` (Beta coefficients), `"negbin"` (IRR)
Value
A list of class `uni_reg` and `gtsummary::tbl_stack`, including:
A publication-ready regression table (`tbl_stack`)
Accessor elements:
`$models`: Fitted regression models for each exposure
`$model_summaries`: Tidy model summaries
`$reg_check`: Diagnostics (only for linear regression)
Examples
data(PimaIndiansDiabetes2, package = "mlbench")
library(dplyr)
pima <- PimaIndiansDiabetes2 |>
dplyr::mutate(diabetes = ifelse(diabetes == "pos", 1, 0))
uni_reg(pima, outcome = "diabetes", exposures = "age", approach = "logit")
Characteristic
N
OR
95% CI
p-value
Abbreviations: CI = Confidence Interval, OR = Odds Ratio